
	

Raouf Boutaba

David R. Cheriton School of Computer Science

University of Waterloo - Canada

ICIN, Issy Moulineaux, March 1st, 2016
	

	

	

Software-Defined Networking and
Application Platforms

Outline

¤  Future Application Platforms: trends and challenges

¤  The SAVI Project

¤  SAVI Smart Edge

¤  Sample Research Contributions
¤  VDC Planner
¤  Venice
¤  Greenhead
¤  NFV Orchestration

¤  Summary, future work and take away message

¤  Implications for network operators and challenges ahead

2

ICT Innovation

3

IDC top 10 predictions

3rd Platform’s 4 Pillars

¤ Mobile broadband

¤ Cloud-based services

¤ Big Data analytics

¤ Social media

4

Mobile Broadband

¤  High connectivity

¤  High transmission speed

¤  Low latency

¤  5G ?

5

Cloud Services

¤  Economical

¤  Scalable

¤  Elastic

¤  Flexible

6

Big Data Analytics

¤  Ability to harness and analyse large and
complex sets of data

¤  The 3 Vs
¤  Volume

¤  Velocity

¤  Variety

¤  More Vs ?

7

Social Media

¤ Social Networking

¤ Social Business solutions

¤ Other innovative applications

¤ Social media search

¤ Social gaming

¤ …

8

Future Application Platform

¤ Mobile broadband

¤ Cloud-based services

¤ Big Data analytics

¤ Social media

9

SAVI Project

Outline

¤  Future Application Platform: trends and challenges

¤  The SAVI Project

¤  SAVI Smart Edge

¤  Sample Research Contributions
¤  VDC Planner
¤  Venice
¤  Greenhead
¤  NFV Orchestration

¤  Summary, future work and take away message

¤  Implications for network operators and challenges ahead

10

The SAVI Project

11

¤  SAVI : Smart Applications on Virtual Infrastructures
¤  An NSERC Strategic Research Network
¤  9 Universities (16 professors & > 80 graduate/postgraduate

students)
¤  13 Industry Partners (IBM, Cisco, Ericsson, Juniper, TELUS, …)

¤  SAVI Research Themes:
¤  Smart applications
¤  Extended Cloud Computing
¤  Smart Converged Edge
¤  Integrated Wireless Optical Access
¤  SAVI Application Platform Testbed

Backbone/
Core

Massive-Scale Datacenters

Virtualized
Router &

Datacenter

Smart Edge Wireless/Optical
Access

SAVI Vision

12

Virtualized
Router &

Datacenter

Smart Edge

¤  Research Scope
¤  Extended computing cloud that includes smart edge
¤  Application enablement leveraging very-high bandwidth access and low-

latency services in the smart edge and massive remote cloud resources
¤  Integrated wireless/optical access controlled by the smart edge
¤  Control & Management system to enable experimentation with service

applications and Future Internet architectures
¤  SAVI Testbed

SAVI Testbed

13

¤  Experimenters request slices of resources
¤  Interconnected to form virtual infrastructures

SAVI Testbed Resources

¤ 1000+ cores

¤ 10+ FPGA systems

¤ 6+ GPU systems

¤ 100+ TB storage

¤ 10/1 GE fabrics (OpenFlow)

¤ 1GE dedicated backbone: ORION

14

SAVI Testbed Dedicated Network

ORION

Edge
Toronto

Core
Toronto

Edge
Waterloo

Edge
York

Edge
Victoria Edge

McGill
Canarie

Canarie

1G
E L2

 Eth
e

rn
e

t

Edge
Carleton

15

Edge
Calgary

Outline

¤  Future Application Platform: trends and challenges

¤  The SAVI Project

¤  SAVI Smart Edge

¤  Sample Research Contributions
¤  VDC Planner
¤  Venice
¤  Greenhead
¤  NFV Orchestration

¤  The Present and the Future of SDN

¤  Conclusion

16

The Smart Edge - Goals

17

¤  To develop a virtualized network and computing
infrastructure that provides responsive and high-
capacity virtualized resources and services close to the
user.

¤  To provide converged computing, networking,
programmable hardware processing, and storage that
complement the resources provided in remote
datacenters

¤  To implement edge routers using virtual resources with a
focus on energy efficiency, scalability and
programmability.

Smart Edge Characteristics

18

¤  Converged
¤  Provides access to heterogeneous resources

¤  Computing, storage and networking (data center, WAN)

¤  Programmable hardware (GPUs, FPGAs, NetFPGAs, BEE boards)

¤  On-Premises
¤  Can be isolated from rest of network while accessing local

resources

¤  e.g., security/safety systems

¤  Proximity
¤  Close to source of information, can capture key information for

Big Data Analytics

¤  Direct access to devices, e.g., can be leveraged by business
specific apps

Smart Edge Characteristics (cont)

19

¤  Low-latency
¤  Close to end user, reducing latency considerably

¤  React faster, improve QoE, minimize congestion elsewhere

¤  Location awareness
¤  User/device tracking

¤  Location-based services (local points of interest), analytics, etc.
¤  Network context information

¤  Real-time network data (e.g., radio condition, network stats)

¤  Context-aware services/apps for improved QoE

¤  Programmability
¤  Software-Defined Infrastructure: Combines cloud computing

technologies and software-defined networking under a single
management system

Use Cases

20

Smart Edge Integrated C&M

21

Edge Node
Network

Open
Stack

Nova

Swift

Neutron
(Quantum)

Glance-api

CONNECTED VIRTUALIZED

Openflow
Controller

(ryu,floodlight)

Flowvisor

computing
resource

networking
resource

Topology
/status

Database

SDI Manager

Application & Service Provider

REST

manage
OF protocol

Physical
resource

Virtual
resource

Smart
Edge

REST

REST

REST

OF Protocol

Cinder

FV
 c

o
n

tro
l U
se

r O
p

e
n

flo
w

C

o
n

tro
lle

r

*-drivers

REST REST

Identity Manager
(KeyStone)

Image Registry
(Glance-reg)

WebPortal
(Horizon)

IPMI/
SNMP

Outline

¤  Future Application Platforms: trends and challenges

¤  Convergence of IT and Telecommunication Infrastructure

¤  The SAVI Project

¤  SAVI Smart Edge

¤  Sample Research Contributions
¤  VDC Planner
¤  Venice
¤  Greenhead
¤  NFV Orchestration

¤  Summary, future work and take away message

¤  Implications for network operators and challenges ahead

22

Virtual Data Centers

¤  Currently cloud providers provide only computing
resources but do no provide guaranteed network
resources

¤  Goal: Provide both guaranteed computing and network
resources
¤  Virtual Data Centers (VDCs): virtual machines, routers,

switches and links

23

VDC Embedding
¤  Objectives

¤  Map VDCs onto physical infrastructure (Computing +
networking resources)

¤  Maximize acceptance ratio/revenue

¤  Minimize energy costs

¤  Minimize the scheduling delay

¤  Achieve all of the above objectives dynamically over-time

¤  VDC Planner*
¤  A migration-aware virtual data center embedding framework

¤  VDC embedding, VDC scaling

¤  Dynamic VDC consolidation.

24

*M. F. Zhani, Q. Zhang, G. Simon, R. Boutaba. VDC Planner: Dynamic Migration-Aware Virtual
Data Center Embedding for Clouds. IFIP/IEEE IM’13. Ghent (Belgium), May 27-31, 2013.

VDC Planner Architecture

25
	
 	

VM Migration: Usage Scenarios

26

¤ Objective function

¤  Embedding cost

Problem formulation

27

embedding cost Operational costs

Migration-Aware VDC Embedding

¤  Sort the VMs by their size

¤  Compute the embedding cost (for each VM and
physical node)

¤  Embed the VM in the physical machine with the minimal

embedding cost
28

Dynamic VDC Consolidation

¤  Sort the physical nodes in increasing order of their
utilizations

¤ Migrate the VMs hosted in low-utilization machines
(using Migration-Aware VDC Embedding Algorithm)

¤  If all VMs are successfully migrated, the machine is
turned off.

29

Experiments

¤  Physical data center:

30

4 top-of-rack switches

400 physical machines
(8 Cores, 8GB, 100 GB disk).

 4 aggregation switches

VL2 Topology

4 core switches

Experiment Set up

¤ VDC requests:
¤  Number of VMs/VDC: [1-20]

¤  VM requirements:
¤  1 − 4 cores

¤  1 − 2GB of RAM

¤  1 − 10GB of disk space

¤  Virtual link capacity: [1-10 Mbps]

¤  Arrival: Poisson distribution
¤  0.01 request/second during night time

¤  0.02 request/second during day time

¤  VDC lifetime: exponential distribution (~3 hours)

¤  Maximum waiting time: 1 hour

31

Performance Metrics

¤  Gain in acceptance Ratio

¤  Gain in revenue

¤  Gain in number of active machines

¤  Request scheduling delay

32

Results: Revenue & Acceptance Ratio

33

¤  Migration-aware Embedding vs. Baseline

¤  VDC planner achieves up to 17% gain in revenue and up to
10% gain in acceptance ratio.

Results: Queuing Delay

¤  Migration-aware Embedding vs. Baseline

¤  VDC planner reduces the scheduling delay by up to 25%.
34

Results: With Consolidation

¤  Migration-Aware embedding + Consolidation

¤  VDC planner uses up to 14% less machines than the
Baseline.

35

Outline

¤  Future Application Platforms: trends and challenges

¤  The SAVI Project

¤  SAVI Smart Edge

¤  Sample Research Contributions
¤  VDC Planner
¤  Venice
¤  Greenhead
¤  NFV Orchestration

¤  Summary, future work and take away message

¤  Implications for network operators and challenges ahead

36

VDC Reliability/Availability

¤  Reliability is a major concern of service providers

¤  A service outage can potentially incur high penalty
in terms of revenue and customer satisfaction

¤  Availability is a common reliability metric specified in
SLAs

¤  VDC availability is dependent on
¤  Service priority

¤  VDC topology and replication groups

¤  Hardware availability

37

Understanding Data Center Failures

¤  Heterogeneous server failure rates*
¤  Server that has experienced a failure is likely to fail again in the

near future

¤  Network failure characteristics **
¤  Failure rates of network equipment is type-dependent

¤  Load balancers have high probability of failure (≥20%),
¤  Switches often have low failure probability (≤5%).

¤  Number of failures are unevenly distributed across equipment of
the same type
¤  E.g. Load balancer failures dominated by few failure prone devices

¤  Correlated network failures are rare
¤  More than 50% of link failures are single link failures, and more than 90%

of link failures involve less than 5 links

38

* Vishwanath et al. “Characterizing Cloud Computing Hardware Reliability”, SoCC 2010.
** Gill et. al. “Understanding network failures in data centers: measurement, analysis, and
implications”, SIGCOMM 2011.

Venice

¤  VDCs have
heterogeneous availability
requirements

¤  Resources have
heterogeneous availability
characteristics

¤  Place VDCs with high
availability requirement
on reliable machines

39

Unreliable machines Reliable machines

VDC 1 (low avail.)

VDC 2 (medium avail.)

VDC 3 (high avail.)

Q. Zhang, M. F. Zhani, M. Jabri, R. Boutaba. Venice: Reliable Virtual Data Center Embedding
in Clouds. IEEE INFOCOM’14, Toronto, ON (Canada), April 27 - May 2, 2014.

¤  Example of 3-tier
application

¤  Availability of device j:

¤  How to compute the
availability of this VDC?

Computing VDC Availability

40

Computing VDC Availability (cont)

41

¤  Identify all possible failure
scenarios Sk and compute the
availability

Computing VDC Availability (cont)

Theorem: VDC availability cannot be
computed in polynomial time in the
general case

Proof: Reduction from the counting
monotone 2-Satisfiability problem

… Need to consider an exponential
number of scenarios in the worst case!

42

Computing VDC Availability (cont)

¤  Observation: it is unlikely to see large simultaneous
failures
¤  Given 3 nodes, each with availability > 95%, the

probability of seeing all 3 nodes fail simultaneously is at
most (1-0.95)3<0.00013

¤  A fast heuristic:
¤  Compute availability using scenarios Sk that involve at

most 3 simultaneous failures

¤  Fast heuristic provides a lower bound on VDC
availability

 43

Problem Formulation

¤  Objective function:

¤  Where

(Resource cost)

(Migration cost)

(Failure cost)

44

Greedy Scheduling Algorithm

¤  For each received VDC request
¤  Initial embedding: embed one node from each replication

group.

¤  Repeat
¤  For each remaining component compute a score as the availability

improvement - resource cost

¤  Embed the component with the highest score

¤  Until the VDC availability is achieved or all nodes are
embedded

¤  Embed the remaining components greedily based solely on
resource cost

45

Experiments

¤  Physical data center:

46

4 top-of-rack switches

400 physical machines
(8 Cores, 8GB, 100 GB disk).

 4 aggregation switches

VL2 Topology

4 core switches

Experiment Setup

¤  VDC request formats
¤  From 1 to 10 VMs per

group

¤  Different availability
requirements

¤  VDC Planner used as a
baseline for comparison

47

(a) Multi-tiered (b) Partition-Aggregate

(c) Bipartite

Results: Availability

48

¤  Venice increases the number of VDCs satisfying availability
requirements by up to 35%

Results: Acceptance Ratio

¤  With migration, the number of accepted VDCs is comparable to
that of VDC Planner

49

Number of accepted VDCs

Results: Revenue

Instantaneous Income Rate

50

SLA Violation Cost

¤  Venice achieves 15% increase in revenue compared to VDC
Planner

Outline

¤  Future Application Platforms: trends and challenges

¤  The SAVI Project

¤  SAVI Smart Edge

¤  Sample Research Contributions
¤  VDC Planner
¤  Venice
¤  Greenhead
¤  NFV Orchestration

¤  Summary, future work and take away message

¤  Implications for network operators and challenges ahead

51

Business Model

¤  Infrastructure Providers (InPs)
build geographically
distributed data centers

¤  InPs rent resources in the
form of Virtual Data Centers
(VDCs)

¤  VDCs geo-distributed to
reduce energy cost and
carbon footprint and/or to
satisfy location constraints

52

InP Operational Objectives

¤  Satisfy performance requirements (e.g., latency)

¤  Reduce energy cost
¤  Use data centers with low electricity prices

¤  Reduce use of power from the grid

¤  Reduce carbon footprint
¤  Use local renewable energy available at the data centers

¤  Use source of power with the minimal carbon emission

¤  Reduce traffic in backbone network

53

Challenges

¤  Sources of clean energy for data centers:
¤  Locally-available renewable energy sources (e.g., solar, wind)

¤  Limited and dependent on location and weather conditions

¤  Electric grid:
¤  Fluctuating prices of electricity and high carbon footprint

¤  Price and carbon footprint differ from one location to
another

54

Greenhead Problem Formulation

55

¤  ILP decision variables:

¤  Objective Function:
Maximize Rj - (Dj + Pj)

¤  Rj: Revenue for VDC request j

¤  Dj: Embedding cost for request j in data centers

¤  Pj: Embedding cost for request j in the backbone network

A. Amokrane, M. F. Zhani, R. Langar, R. Boutaba, G. Pujolle. Greenhead: Virtual Data
Center Embedding Across Distributed Infrastructures. IEEE Transactions on Cloud
Computing (TCC), Vol 1(1), pp. 36-49, September 2013

Greenhead Framework

56

Greedy Algorithm

¤  Step 1 - VDC Partitioning: Location Aware Louvain
Algorithm
¤  Split the VDC requests into partitions with high intra-

partition bandwidth demand and low inter-partition
bandwidth demand

¤  Minimize inter-data center traffic

¤  Step 2 – Partition embedding: Greedy partition
assignment to data centers
¤  Assign each partition to the data center that:

¤  Satisfies location and delay constraints
¤  Minimizes electricity costs and carbon footprint

57

Experiments

¤  Physical infrastructure:
¤  4 data centers located in New York, California, Illinois and

Texas

¤  Backbone network: NSFNet network

58

Experiments Setup

¤  VDC requests:
¤  Number of VMs randomly generated between 5 and 10 for

small-sized VDCs and between 20 and 100 for large-sized
VDCs

¤  Virtual links randomly created with a bandwidth demand
between 10 and 50 Mbps

¤  Poisson arrivals (8 requests per hour) and exponential lifetime
(average 6 hours)

¤  15 % of the VMs have location constraint

¤  Baseline approach: Greenhead without partitioning

59

Results: VDC Embedding

¤  Greenhead provides near-optimal solution within a
reasonable time frame

60

Computation Time (ms)

Objective function

Results: Acceptance, Revenue, Utilization

¤  Greenhead achieves higher acceptance ratio, higher
revenue and better backbone network utilization

61

Results: Renewable Energy

¤  Greenhead maximizes the utilization of available
renewable energy

62

Outline

¤  Future Application Platforms: trends and challenges

¤  The SAVI Project

¤  SAVI Smart Edge

¤  Sample Research Contributions
¤  VDC Planner
¤  Venice
¤  Greenhead
¤  NFV Orchestration

¤  Summary, future work and take away message

¤  Implications for network operators and challenges ahead

63

NFV Orchestration

¤  Middleboxes have become an integral part of modern networks

¤  Traditional hardware middleboxes are:
¤  Expensive
¤  Proprietary
¤  Vertically integrated

¤  Difficult to compose Service Function Chains
¤  In a service function chain traffic flows through an ordered

sequence of middleboxes
¤  Example:

¤  Firewall à IDS à Proxy
¤  Traffic Analyzer à Firewall à Video Optimizer

64

Network Function Virtualization

¤  introduced to overcome problems with HW middleboxes

¤  Basic idea:
¤  Packet processing by software middleboxes or Virtualized

Network Functions (VNFs)

¤  VNFs can be deployed on commodity servers

¤  E.g., x86 based systems

¤  VNFs are no longer constrained to fixed network locations

¤  Service function chains can be composed on the fly

¤  These features are expected to facilitate network
optimization

65

NFV Orchestration Contributions

¤  Two important aspects of NFV Management and
Orchestration:
¤  Service chain orchestration

¤  API for NFV management and Orchestration

66

Service Chain Orchestration:
Problem Statement

¤  Given
¤  A set of VNF chain requests

¤  Physical infrastructure status

67

TA	
 FW	
 VO	
 FW	
 IDS	
 LB	

68

Problem Statement (Cont.)
¤  We need to decide

¤  How many VNF instances (VM, container) to deploy?

¤  Where to place them?

¤  Which VNF (from chain) should be assigned where?

¤  How to route traffic between the VNFs?

TA FW VO FW IDS LB

Virtualization

IDS LB TA

Virtualization

VO FW

VNF Orchestration Problem (VNF-OP)

VNF Orchestration Problem

¤ VNF-OP is a combination of three problems:
¤  Allocating resource for VMs/containers

¤  Assigning chain VNFs to these VMs

¤  Finding routing paths for the chains

¤ Mathematical formulation is difficult:
¤  Joint optimization results in quadratic constraints

¤  Takes a long time to solve even for small problem
instances

69

Optimal Solution

70

¤  Proposed approach:
¤  Transform physical network

¤  Can be formulated as an ILP

¤  Much faster than implementation with quadratic constraints

M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. On Orchestrating Virtual Network
Functions. IEEE/ACM/IFIP CNSM, Barcelona (Spain), November 9-13, 2015.

Heuristic

71

FW
Proxy IDS

S1

S2
S3

S4

How to map ?

{S1, S2, S3} {S2, S4} {S1, S3, S4}
Location
Constraint

Proposed Solution: Heuristic (cont.)

72

¤  Create a multi stage graph (one stage for each VNF) as follows:

FW
Proxy IDS

S1

S3

S2

S2

S4

S1

S3

S4

Cost of placing Proxy at S2
If FW is placed at S3

Possible locations
for placing FW

•  Objective: Find a path from left most to
right most stage that has minimum cost

•  Select exactly one node at each stage

Heuristic (cont.)

73

¤  Create a multi stage graph (one stage for each VNF) as follows:

FW	

Proxy IDS

S1

S3

S2

S2

S4

S1

S3

S4

•  Objective: Find a path from left most to
right most stage that has minimum cost

•  Select exactly one node at each stage
•  Similar to assigning tags to an unknown

sequence of observations based on known
cost function

Solution: Use Viterbi algorithm to find
the minimum cost path
•  Viterbi is widely used in pattern

recognition to assign tags to
unknown sequences of
observations.

Evaluation: Setup

¤  Two network topologies:
¤  Internet2 research network (12 nodes, 15 links)
¤  A university data center topology (23 nodes, 42 links)

¤  Server energy consumption data collected from Intel
datasheet

¤  Hardware middlebox energy consumption data collected
from a manufacturer

¤  Traffic traces
¤  Traffic matrix from Internet2 network
¤  Data center traffic trace from *

74
* T. Benson et al. Network traffic characteristics of data centers in the wild. ACM IMC ’10

Evaluation: Results

¤  Hardware Middlebox vs. VNF

75

Computed Ratios

¤  VNF provides a 4 x reduction in total cost

Evaluation: Results

¤  Solution Quality: Heuristic vs. Optimal

76

Computed Ratios

Summary of Results

¤ 4x OPEX reduction by VNFs compared to
hardware middleboxes

¤ Heuristic produces solutions that are within 1.3x
the optimal solution

¤ Heuristic is faster then the optimal
¤  65x for Internet2

¤  3500x for DC network

77

NFV Management
& Orchestration API

78

Network Compute

NFV Management &
Orchestration

Southbound API:
OpenStack nova/neutron,
libvirt, OpenFlow etc.

Northbound API for Deploying, Configuring, and
Monitoring Virtual Network Functions (VNFs)
RESTful? Policy Language? other?
Our proposal: nfio

VNFs
NFV

Infrastructure

NFV Users /
Operators

* Simplified view of ETSI Reference NFV Architecture

What is nf.io ?

79

NFV Management &
Orchestration

nf.io: A Northbound Interface for
NFV Management & Orchestration

uses Linux File system to abstract the resources.

What is nf.io ?

80

Network Compute VNFs

NFV
Infrastructure

nf.io

“Everything” (VNF/
configuration/

state) is represented in
a file system hierarchy

NFV Management &
Orchestration

nfio: A Northbound Interface
for NFV Management &

Orchestration

nf.io provides virtual files as placeholders to write VNF configurations
as well as read VNF states.

What is nf.io ?

81

Network Compute VNF
NFV

Infrastructure

nf.io

“Everything” (VNF/
configuration/

state) is represented
in a file system

hierarchy

NFV Management &
Orchestration

nfio: A Northbound Interface
for NFV Management &

Orchestration

nf.io
Compute

Driver

libvirt docker

-  Infrastructure agnostic API
-  high level operations (hides underlying

details): file system like API

-  Resource specific drivers

Deploy NF

...

What is nf.io ?

82

Network Compute VNF
NFV

Infrastructure

nf.io

“Everything” (VNF/
configuration/

state) is represented
in a file system

hierarchy

NFV Management &
Orchestration

nfio: A Northbound Interface
for NFV Management &

Orchestration

nf.io
Compute

Driver

libvirt docker

-  Infrastructure
agnostic
high level operations

-  Resource specific
drivers

Deploy NF

...

M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. nf.io: A File System Abstraction for
NFV Orchestration. IEEE NFV-SDN, San Francisco (USA), November 18-21, 2015.

Why File System Abstraction ?

¤ Familiar tools to manage file systems
¤ mkdir, cp, move, rm, rsync, etc.
¤ grep, sed, awk, tail, etc.

¤ e.g., instantiate a new VNF
¤ mkdir -p /vnfs/user-a/chain-b/ids

¤ Rich set of file system management operations offered
by configuration management tools such as Chef,
Puppet, Salt etc.

83

System Architecture/Implementation

84

User space
filesystem using

FUSE (File System
in User Space)
python library

Docker
python API

Linux bridge,
route, iptables

Docker
containers on

physical
servers

End-host
networking

only

●  ngnix as proxy
●  bro IDS
●  iptables firewall

http://watnfv.github.io/nf.io/

Outline

¤  Future Application Platforms: trends and challenges

¤  Convergence of IT and Telecommunication Infrastructure

¤  The SAVI Project

¤  SAVI Smart Edge

¤  Sample Research Contributions
¤  VDC Planner
¤  Venice
¤  Greenhead
¤  NFV Orchestration

¤  Summary, future work and take away message

¤  Implications for network operators and challenges ahead

85

Summary
¤  Current ICT “Revolution” ?

¤  Virtualization and Softwarization as enablers of Future
Application Platforms

¤  SAVI Testbed
¤  Canadian Future Application Platform, leveraging Multi-tier

Clouds and SDN to provide a fully programmable research
testbed

¤  This presentation
¤  Shown how some of the challenges underlying the

development of the Smart Edge SDI Manager have been
addressed, namely resource management, service
availability and green operations

¤  VDC Planner, Venice and Greenhead operational in the SAVI
Testbed

¤  Shown how the smart edge can be leveraged for NFV
deployment, orchestration and management

86

What’s Next in SAVI ?

¤  Smart Edge & SAVI Testbed 2.0:
¤  Expand capacity and number of edges

¤  Deploy virtualized FPGA resources

¤  Spectrum + RF Frontend Virtualization

¤  Deploy Wireless Access Manager in Smart Edge

¤  Extend to Software Defined Radio and Radio over Fiber access

¤  Deploy NFV orchestration module in SDI Manager

¤  Extend Monitoring with stream processing and data analysis

¤  Cloud-RAN to provide LTE using the Smart Edge

¤  Kaleidoscope: SAVI Demonstrator App

87

Kaleidoscope

88

Other scenario ?

89

Take Away Message

¤  Unprecedented challenges facing network operators:
¤  Exponential increase in data/video traffic
¤  Massive connectivity (mobile devices, things, everything)
¤  Proliferation of OTT services

¤  To meet above challenges and create new revenue streams
with innovative services (e.g., content caching, in-network
video streaming, ect.):
¤  Cost-effectiveness - leveraging economies of scale by

constructing infrastructure from a few commodity hardware
¤  Elasticity and Agility - ability to rapidly deploy and elastically scale

services
¤  Efficiency and programmability

Network operators need to reinvent their networks

90

Reinventing networks @ the Smart
Edge

¤  Why ?
¤  Characteristics of smart edge: Converged, On-premises, Proximity,

Low-latency, Location-awareness, Network context information,
Programmability

¤  Where ?
¤  Central Offices re-architected

¤  How ?
¤  Software-Defined Infrastructure leveraging:

¤  Cloud Computing (virtualized platforms, service-oriented
architecture, elastic scaling, and scalability)

¤  SDN (simpler forwarding devices, programmable control plane)
¤  NFV (reduced CAPEX and OPEX, optimized service chaining)

Implications for network operators ?

91

Outline

¤  Future Application Platforms: trends and challenges

¤  Convergence of IT and Telecommunication Infrastructure

¤  The SAVI Project

¤  SAVI Smart Edge

¤  Sample Research Contributions
¤  VDC Planner
¤  Venice
¤  Greenhead
¤  NFV Orchestration

¤  Summary, future work and take away message

¤  Implications for network operators and challenges ahead

92

Implications & challenges ahead

¤  Scalability
¤  Early SDN deployments in DCNs revealed excessive flow setup

and statistics gathering – controller performance bottleneck
¤  Problem exacerbated in WANs: Difficult to maintain acceptable

flow setup time and global network view

¤  Traffic Engineering
¤  Leverage SDN abstractions to make traffic engineering

decisions and ultimately better utilize network resources

¤  SDN Support for NFV
¤  How SDN can help in steering traffic between dynamically

instantiated VNFs, and providing support for NFV chaining?

¤  Migration from currently deployed hardware to SDN
solutions

¤  Security

¤  Managing the “S” in “SDN”

Managing the “S” in “SDN”

94

¤  SDN control plane is a distributed software system

¤  Software is prone to bugs
¤  Industry Average: "about 15 - 50 errors per 1000 lines of delivered

code." [1]

¤  SDN control plane is no exception

¤  In [2], even for very small scale networks (2~4 switches) and the very
basic L2 learning module the authors found the following number of
new bugs:

¤  Floodlight – 2; NOX – 1; POX - 4

¤  Already known issues/bugs

¤  NOX - 3 (open), and 24 (closed)

¤  POX - 7 (open), and 108 (closed)

[1] Code Complete by Steve McConnell
[2] Scott et al., Troubleshooting SDN Control Software with Minimal Causal Sequences,
SIGCOMM 2014.

Debugging the Control Plane

¤  SDN control plane has to process a sequence of events that
involve multiple actors

¤  In case of an error, only way to debug is to capture and replay
traffic trace to execute the same code branch (hopefully in the
same sequence)

¤  It may become very difficult to reproduce an error due to
¤  Event timing issues (no clock sync)
¤  Controller’s internal thread scheduling

¤  Non-determinism in the trace (e.g, packet/event ordering in the
queue)

¤  Parallel processing in the controller

¤  It is impractical to collect complete network and controller
state to reproduce the exact actions for the same traffic

Management Issues

¤  Managing the policies – We know how to do that, Do we?

¤  According to SDN proponents, the controller will automate most
of the network management tasks

¤  How do we enforce some policy manually or that cannot be
automated (depends on some external event)?

¤  In SDN, human operator’s visibility and control is curtailed
due to automation

¤  SDN introduces additional risks, including failure of the controller
itself and security vulnerabilities (e.g., heartbleed)

¤  The possibility of multiple controllers issuing contradictory
instructions to switches

¤  Management functions need to adapt to a flow based model
(e.g., monitoring, configuration)

Management Issues (cont)

¤  Network functions will be translated to controller applications
¤  What kind of impact this will have on the existing software

infrastructure?

¤  How to update one application without disrupting others

¤  Controllers + applications are compiled as a single package

¤  Currently it is not possible to update/modify the code of one
application without stopping the controller (the entire network)

¤  SDN is supposed to remove vendor lock-in
¤  Are we jumping from fire (hardware vendors) to frying pan (software

vendors)?

¤  Historically speaking, who provides robust products: Cisco vs.
Microsoft?

¤  Transition from communications engineers to computer
scientists, from network administrators to app developers

Questions

