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What is Big Data?
e The Big Data process
* Impacts for networks ?
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What is Big Data?




{2o) Big Data
 The concept was introduced in 2001 Number of
— Doug Laney (Meta Group/Gartner) variables /sources
Number of observations VOLUME VARIETY

x Number of variables

Depth

Observation 1

VELOCITY

Observation 3

Number of
events/second

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-

Volume-Velocity-and-Variety.pdf
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Data Variety

idn

2016

Data collected is increasingly varied & non-structured
—> Large Variety

Structured e Data bases
Data e Data files

Unstructured e Text

Data e Tags
e RFID
Sensor Data e Temperature, pressure, acceleration, GPS ...

e Network sensors

New data ® Video, photo, image, Voice, audio ...
types ® Social
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Data Velocity &

2016

Data produced is coming increasingly fast —> Large Velocity

Data at rest

Data in
motion

e Data collected in bulk from relatively
Batch Data static data sources

Near time e Data collected with delay from dynamic
Data data sources

Real time e Data collected & processed from
Data dynamic data sources

e Data processed from very dynamic data
Streams sources. Can hardly be collected
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How can we handle Big Data?

Because of exponential improvements in hardware ...

Storage
A

m

e

T

8_ 1980 - Appie: § 14,000,000 per TB
@ 2010 - Barracuda, $70 per TB

1970 today
4
1961 - 1BV 1620, $1,100,000,000

O L)

=

w

O

@

Q

¥

2009 - AMD Radeon, $0.59

1960 today

Network

1 bilkon hosts

@
8
N -
©
[} ARPANet Node |
c AMUCLA
1969 today
Bandwidth

$1200 per Mbps

$ per Mbps

1998

today

http://radar.oreilly.com/2011/08/building-data-startups.html
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{»j How can we handle Big Data?

... hew IT architectures

Operational Systems
(Structured data)

|Extract, Transform, Load -
Operational (Batch, near real-time, or Casual User
System real-time) m
Aereg w‘”"’ﬂ :
Bl

Server
.| Data
Mart
....................................... Top-down Architecture
Bottom-up Architecture
A p,
5 In-memory
F— Fron Q"ny a Qa’ry »
Audio/video Standing J‘epo"
Data - Sandbox
i il Analytic platform or Ad hoc query
—————1 non-relational
External database Ad hoc query
Data -
bt Power User
(m:::lm z::: ) http://www.b-eye-network.com/blogs/eckerson/assets c/2012/02/BI%20Ecosystem-474.php
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iy How can we handle Big Data?

{

.. new Data Bases : the NoSQL family

Document Database Graph Databases

K: Couc?base . O Neo4j

'.MarkLogiC‘ o
0 InfiniteGraph
mongo D B The Distributed Graph Database
Wide Column Stores Key-Value Databases

LE‘L ‘ 8CCUMULOD

.{mn;amazon HYPERTABLE~
“"“DynamoDB

—/-,,‘?;?‘ Cassandra IH-iPBF‘HCSHEE
sriak |

Amazon SimpleDB

@cloudtxt http://www.aryannava.com

http:/aryannava.com/2014/04/06/nosql-databases-family/
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iy How can we handle Big Data?

Thasja niversty

-

... new data architectures

Queries (SQL) INTERFACE Direct Record Access or Queries
DATABASE/
D High-Performance Hadoop
Relational Database ISTRAITD Traditional (MapReduce
- Relati | Databa
FRAMEWORK elational Da se | ‘ engines)
Monolithic Hardware Monolithic Hardware Distributed Hardware
(few CPUs and network HARDWARE (few CPUs and nework (multicore CPUs, multiple computers
computers) computers) connected via high-performance network)
Architecture Architecture (il' b l l‘: Ihl o —;)
(centralized processing) (centralized processing) il A et
TRADITIONAL RELATIONAL STACK FOR THE NEW DATA FOUNDATION

DATABASE STACK
ire 1O The traditional relational database stack, a staple of enterprise computing for decades, has evolved to a more

varied data foundation
http://assets1.csc.com/innovation/downloads/LEF 2011Data rEvolution.pdf

Source: CSC
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i) How can we handle Big Data? n

2016

Thasji Universty

many Big Data software tools
— Distributed computing (Hadoop, Spark)

— Data mining (scalable & distributed on hadoop / Spark)
SOC | a | N etwo rk Big Data Landscape 2016 (Version 2.0)
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{») Big Data ... is not always so big

!
i

e \olume

— For example in a Churn detection problem, the number of
observations is the number of Customers

e Velocity
— Very few applications require small response time
e Except certainly in network monitoring
* Variety

— But it is possible —and highly recommended — to increase it
 We'll see how
- that will increase volume

e Many projects actually use Big Data techniques on relatively
“small” data
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The Big Data process




2016

{2 Big Data process &

Implementing Big Data means

* A big data collection problem
— Collect internal data sources & add external sources ...

— It is an always-active process (the more data the merrier)

e A big migration problem
— Many internal databases / datawarehouses

Internal Data Sources

— A data lake might be considered Open Data Sources

* Store as-is
* Avoid “integral” reconciliation

— Move to distributed elastic storage

pe

Data Lake
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o) Big Data process &

e Projects will get data from the data lake as needed
e A Big Data project has 3 main phases

— Data Governance deals with collecting, cleaning, storing data &
producing new features

— Machine Learning deals with the analysis of the data to produce
predictive models

e Machine Learning is the tool to extract Value
e Algorithms are not new (1980-1990)

— IT involves the deployment of the application in the IT architecture

Data Governance »<«—Machine Learning—p»= IT

Data Data Feature Modellin Denlovment
Collection Cleaning Engineering g by A
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8> What is important ?
Not so important issue: algorithms Important issues
e Many well known algorithms e Data: Variety
— Linear/ logistic regression e Algorithms
— Decision trees — Scalability
_ Random forests — Explicability / predictability

— Resistance to noise/ missing data

— K-
r.l'n (sparsity) / correlated data
— Naive Bayes — Computing time (Build / Apply)
— Neural networks — Performance
— Support vector machine (SVM) e Security / data protection

— Deep learning ... e Automation / productivity

“Invariably, simple models and a lot of data trump more elaborate models based
on less data” nttps//static googleusercontent comjmedia/research google.com/en//pubs/archive /35175,
The model with best performance is not necessarily the best for deployment (ex:
Netflix prize)
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e Variety is the critical factor in Big Data
— More varied sources
— More variables

“At the end of the day, some machine learning projects succeed
and some fail. What makes the difference? Easily the most
important factor is the features used”.

* Feature engineering
— It aims at generating new features computed from the raw data

— So far Feature engineering largely is a manual process, with domain-
dependent expertise required, using up to 70% of a project effort

“One of the holy grails of machine learning is to automate more
and more of the feature engineering process”

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
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{2k Increasing Variety

An example in Credit Card fraud detection on Internet
* Progressively increase Variety to increase performance

— Produce new features from initial variables g
* Aggregates §
=
e Social variables 2
* Scores >
st :7| 300 | 366|959 99 Variety
— 372997 - Card Merchant Social Var. i
N Aggregates Aggregates Vi
agres ggreg "7 Merchant

— Precision is multiplied by 5

Model Precision
Baseline 8,18%

Baseline + Agg. 19,00%
Baseline + Agg. + Social 40,58%

March 03 2016 Track B — BIG DATA INSIGHTS FOR NETWORKING 18



‘.
)

Y
A

NSy Challenges

:
o | i

Organize data collection & storage
— Architecture for storage : almost always a distributed cluster / cloud

e For building a Machine Learning model
— A server with large RAM (2-4 TB) is ideal (in-memory analytics)

* Computing features is costly: having all data/computations in RAM is fast
— Distributed cluster + Spark may be necessary
— Use open-source libraries
e Scikit-learn (python, in-memory), MLLib (spark)
e For deploying a Machine Learning model

— Balance the cost of using/maintaining many features in the model
with the gain in performance

e The hardest challenge

— Change mindset : learn how to phrase the question for Machine
Learning
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Impacts for networks ?




{2>h The power of Variety idn

2016

Customers Data

Call Centers Data
Products Data

Open Data

Network Data
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e Secure Multi-party Based Cloud Computing Framework for
Statistical Data Analysis of Encrypted Data
— Harsha S Gardiyawasam Pussewalage (University of Agder, Norway)

* Data I/O Provision for Spark Applications in a Mesos Cluster
— Nam Hoai Do, Tien Van Do and Xuan Tran (Budapest University of
Technology and Economics, Hungary),; Lorant Farkas and Csaba Rotter
(Nokia Networks, Hungary)
e Subjective Perception Scoring
— Jorg Nieméller (Ericsson, Sweden); Nina Washington (Ericsson
Research, Sweden)
* Fighting Fire with Fire: Survey of Strategies for Counteracting
The Complexity of Future Networks Management

— Anne-Marie C. Bosneag, Sidath Handurukande, MingXue Wang
(Ericsson Research Centre, Ireland)
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